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Abstract

The use of a hollow plasma channel in plasma-based acceleration has ben-
eficial properties for the acceleration of electron and positron bunches. In
the scope of the FLASHForward facility at DESY, the generation of such
a plasma structure is examined. Therefore, the generation of a ring-shaped
laser intensity profile with different techniques is analyzed.
From the obtained intensity profiles the electron density of a hollow plasma
channel is simulated in the focal region. Different parameters are scanned to
understand their influence on the electron density distribution - an important
parameter being, for example, the radius of the central region of the channel.
In addition to the simulations, experiments are presented, during which a
laser pulse is transformed into a hollow beam with a spiral phase plate. Sub-
sequently, it forms a plasma during the interaction with hydrogen, where the
plasma is imaged with interferometry. For energies above 0.9 mJ a hollow
plasma structure can be observed at the location of first plasma formation.
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Kurzfassung

Die Verwendung eines hohlen Plasmakanals bei der plasmabasierten
Beschleunigung hat vorteilhafte Eigenschaften für die Beschleunigung von
Elektronen- und Positronenbündeln. Im Rahmen der FLASHForward-Anlage
bei DESY wird die Entstehung einer solchen Plasmastruktur untersucht. Es
wird die Erzeugung eines ringförmigen Laserintensitätsprofils mit verschiede-
nen Techniken analysiert.
Aus den erhaltenen Intensitätsprofilen wird die Elektronendichte eines hohlen
Plasmakanals im Fokusbereich simuliert. Verschiedene Parameter werden
gescannt, um ihren Einfluss auf die Elektronendichteverteilung zu verstehen
- ein wichtiger Parameter ist zum Beispiel der Radius des zentralen Bereichs
des Kanals.
Neben den Simulationen werden Experimente vorgestellt, bei denen ein
Laserpuls mit einer Spiralphasenplatte in einen Hohlstrahl umgewandelt
wird. Anschließend bildet dieser bei der Wechselwirkung mit Wasserstoff ein
Plasma, wobei das Plasma interferometrisch abgebildet wird. Für Energien
über 0.9 mJ kann eine hohle Plasmastruktur am Ort der ersten Plasmabil-
dung beobachtet werden.
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Chapter 1

Introduction

Electron beams with high energies find application in several scientific fields
such as a source for free-electron laser (FEL), for example the X-FEL at
Deutsches Elektronen-Synchrotron (DESY), in material and life science or
in colliders for particle physics. At the Large Hadron Collider at CERN,
for example, the Higgs-boson was discovered at a center of mass energy of
E ≈ 7 TeV [1]. Reaching these energies with conventional radio frequency
accelerators requires distances on the kilometer scale because these are
limited to acceleration gradients around 50 MV/m [2] due to material
breakdown.
To overcome this limit in accelerating gradient other possible methods for
the acceleration of particles are being investigated. In 1979 Tajima and
Dawson [3] proposed to use the electric fields generated by the charge
separation in a plasma for the use in electron acceleration. These electric
fields can be created with a high-intensity laser pulse. It was only at that
time, that laser systems were powerful enough to provide sufficient energies
to the plasma to drive a plasma wave. This method has proven very effective
since, mainly because gradients in the GV/m range are achievable - three
orders of magnitude higher than before([4],[5]). The accelerator becomes
very compact, as the accelerating distance is only a few cm long[6].
The FLASHForward facility[7] is a plasma-based accelerator beamline at
the free-electron laser FLASH at the DESY. The primary goal of this
experiment is to demonstrate acceleration of electron beams with sufficient
quality to be able to achieve FEL gain. FLASHForward does not use a laser
to drive a wakefield but instead uses an electron beam for the acceleration.
However, since the field of the electron beam is not strong enough to ionize
the hydrogen gas in the interaction region, the plasma is created by a 25
TW laser system. The plasma wave is then driven by an electron bunch
from the FLASH linear accelerator. In the excited waves, an injected witness
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1. Introduction 2

bunch may then be accelerated to GeV energies.

In those wakefields not only accelerating longitudinal electric fields exist,
but beams also feel strong transverse forces that can limit beam quality.
Not matching the injected beam to the plasma waves can lead to emittance
growth[8]. Hollow plasma channels have been proposed to tackle this
problem. The transverse shape of these channels allows for the independent
control over accelerating and focusing fields. Furthermore, this structure
can be used for beams of either charge. The acceleration of positrons in the
non-linear regime is challenging in the wakefield produced with a uniform
plasma. The region in which the wakefields are both accelerating and
focusing is located at the back of the wakefield, where the plasma electrons
meet on axis. This region is very small compared to the region available
for electron acceleration. In this possible location in the wakefield for the
positron bunch the plasma electron density is not uniform. This means,
that the focusing force and the accelerating gradient vary transversely([8],[9]).

The goal of this thesis is the generation and characterization of a hollow
core plasma channel. Chapter 2 gives an overview of the theoretical back-
ground necessary for the understanding of this thesis. The generation of a
hollow laser pulse and a simulation of the electron density evolution is de-
scribed in chapter 3. The experimental setup and the used methods for the
measurements are detailed in chapter 4. Results of these experiments to the
creation of hollow plasma channels are presented in chapter 5. Finally, chap-
ter 6 summarizes the results and gives an outlook to future experiments and
applications.



Chapter 2

Theoretical Background

This chapter gives an overview of the theoretical background needed for
the comprehension of the present thesis. The first section 2.1 deals with
the description of laser pulses via Gaussian beam optics and gives a short
introduction into the impact of beam phase onto the intensity distribution.
Afterwards, a basic description of a plasma is given and important plasma
parameters are introduced. Section 2.3 contains an explanation of ionization
processes caused by a laser pulse. The last section describes the acceleration
of electrons in a plasma wakefield and motivates the use and creation of
hollow core plasma channels.

2.1 Gaussian Beam Optics

The electric field of an electromagnetic wave in the so-called paraxial approx-
imation can be described by [10]

E(x, y, z, t) = u(x, y, z) exp (−jkz) exp (jωt) (2.1)

with k = ω/c and c the speed of light. The paraxial approximation is made
for light that propagates under a small angle with respect to the optical axis,
such that tan(θ) ≈ θ, sin(θ) ≈ θ and cos(θ) ≈ 1. The amplitude u is a slowly
varying function on the wavelength scale and has to satisfy the paraxial wave
equation

(

∂2

∂x2
+

∂2

∂y2

)

u − 2jk
∂u

∂z
= 0. (2.2)

One class of electric field solutions to the paraxial wave equation are the
Gaussian beams, which represent the ideal case for a real laser beam. The
normalised field amplitude for a Gaussian beam during free space propagation
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Figure 2.2: Transverse intensity profile of a Gaussian TEM00 beam and a
Laguerre LG1

0 beam.

The Rayleigh length can be seen as a measure for the focusing strength of a
laser. It indicates after which length the beam waist has increased by

√
2 to

ω(z) =
√

2ω0.

2.1.1 Laser Phase

The Gaussian beam is a solution to the paraxial wave equation. A super-
position of a Gauss beam and an additional phase is still a solution to the
wave equation and thus propagation invariant[11]. The Laguerre Gaussian
(LG) beam is an example of such a superposition with a helical phase. The
amplitude of the Laguerre Gaussian mode along its propagation is given by
[12]

uLG
p,l (r, φ, z) =

CLG

√

1 + z2/z2
R

(

r
√

2

ω(z)

)2

Ll
p

(

2r2

ω2(z)

)

exp

(

−r2

ω2(z)

)

× exp

(

−ikr2z

2(z2 + z2
R)

)

exp

(

i(2p + l + 1)
z

zR

)

exp (−ilφ)

(2.8)

where CLG is a constant and Ll
p(x) are the associated Laguerre polynomials.

For l = p = 0 the Laguerre polynomial is L0
0(x) = 1 and equation 2.8 is equal

to the Gauss mode. The intensity distribution of the LG1
0-mode has a circular

symmetry and is depicted in figure 2.2 in comparison to the Gaussian TEM00

mode.
The transverse extent is dependent on l and is always larger than the

Gaussian beam. Assuming the same energy in both beams, then the peak
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Figure 2.3: Phase map of a Laguerre Gaussian beam with l = 1.

intensity in the LG beam is lower.

In the center of an LG beam a phase singularity exists (compare fig. 2.3),
which leads to the intensity minimum. This dark spot can be observed in
the near and far-field as the beam is propagation invariant. The intensity
maximum has the shape of a ring around the center but may be distorted
due to phase modulations in the initial beam (see section 3.2.3).

2.2 Plasma Basics

2.2.1 Definition of plasma

The term plasma (Greek: moldable substance) is used to describe a state of
a matter in which its charged constituents are separated from each other due
to high energy influx. It consists of collectively behaving matter which has
to have the following properties to be called a textbook plasma (for example
in [13]):

1. Spatial quasi-neutrality: The volume of the plasma has to be large in
comparison to the Debye shielding length λD.

2. Temporal quasi-neutrality: The time scale on which ordinary gas
interaction happen is much larger than the electron plasma frequency
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ωp for charge shielding to occur.

3. Ideal plasma conditions: The number of charged particles inside the
Debye sphere is greater than one (Λ >> 1) in order to provide collective
behavior.

2.2.2 Debye Length

The Debye length is the characteristic length in a plasma on which the elec-
trical potential of a local charge separation persists. In the proximity of a
charge, there are statistically less charge carrier of the same polarity. This
leads to a sheathing effect of the initial charge and to the plasma appearing
electrically neutral on scales larger than the Debye length. The Debye length
is defined by [13]

λD =

√

√

√

√

ǫ0kB

e2

(

ne

Te

+
∑

ionspecies

Zini

Ti

)−1

(2.9)

where ǫ0 is the electric permittivity in vacuum, kB is Boltzmann’s constant,
ne and Te are the electron density and temperature, respectively. Correspond-
ingly, ni and Ti are parameters of the ion species with charge state Zi. Due
to their high mass the plasma ions can be considered immobile and thus the
Debye length can be written as:

λD =

√

ǫ0kBTe

nee2
(2.10)

Assuming a plasma density of ne = 1018 cm−3 at an electron temperature of
Te = 5 · 104 K one calculates a Debye length of λD = 15.4 µm.

2.2.3 Plasma Frequency

When one assumes a small, one dimensional displacement of an electron in-
side the background plasma of infinitesimal distance δx the resulting electric
field has a strength of Ex = − enδx

ǫ0

. This gives

m
d2δx

dt2
= eEx = −m

ne2

ǫ0m
δx (2.11)

with the plasma frequency

ω2
p =

nee
2

ǫ0m
(2.12)
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where m is the electron mass. Assuming a plasma density of ne = 1018 cm−3

the plasma frequency is ωp = 1.773 · 10−171/s. This parameter describes the
basic oscillation frequency of the so called plasma or Langmuir waves. It also
defines the time scale of which collective electron effects happen. Again the
ion motion is neglected due to their high mass compared to electrons.

2.2.4 Ionization Defocusing

The refractive index of plasma is given by

ηp =

√

1 −
ω2

p

ω2
L

(2.13)

and thus is dependent on the electron density, where ωL is the laser frequency.
When a laser pulse travels through undisturbed gas it will ionize it depending
on its local intensity. A focused Gaussian laser beam has an intensity distri-
bution, where the intensity maximum is on axis and it falls off radially. The
electron density behaves accordingly as it is dependant on the laser intensity
and an electron density gradient is formed. Light rays traveling through the
plasma will now be bent due to refraction. One can calculate the path a light
ray takes by looking at the bending angle due to the refractive index [14]

dθ =
∂∆η

∂r
ds (2.14)

When substituting equation 2.13 the bending angle after traveling a dis-
tance L is given by

θ =
1

2

∫

∂(ne/nc)

∂r
ds (2.15)

Due to this effect, the laser is defocused depending on the plasma electron
density. This prevents the laser pulse from reaching its maximum intensity
and minimum beam waist.

2.3 Laser Based Ionization Processes

At laser intensities on the order of 1014 W
cm2 the field gets large enough to influ-

ence the Coulomb potential in atoms. Different mechanisms can be observed
and will be discussed for increasing intensities in the following section.
A bound electron inside an atom will be exposed to a combination of Coulomb
and laser field. The corresponding potentials are the ionization potential Ip

and the ponderomotive potential Up. To decide which process is dominant
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just from these two parameters, one can look at the comparing Keldysh
parameter[15]

γ =

√

Ip

2Up

(2.16)

which distinguishes between photo ionization and ionization by strong fields.
For γ >> 1 photo ionization is dominant, while at strong intensities and of
γ << 1 tunnel ionization or barrier suppression ionization are the leading
effects.

2.3.1 Photoionization

Photoionization describes the process of energy absorption, where the
total energy of photons E = hc

λ
is transferred to electrons in the atomic

field. When enough energy is transferred to exceed the Coulomb potential
the electron will become free with surplus energy being its kinetic energy
(fig.2.4). For laser pulses with high fluence, more than one photon can be
absorbed by a single electron. In that case, the electron can be separated
from the atom by absorption of two or more photon energies simultaneously.
The total energy of all absorbed photons is enough to ionize the atom even
though the energy of a single photon would not have been sufficient. This
process is called multi-photon ionization.

2.3.2 Tunnel Ionization

With increasing laser intensity the influence of the laser field on the ioniza-
tion processes increases. The Coulomb field is deformed by the laser gener-
ating a barrier of finite thickness around the potential well. This allows the
trapped electrons to tunnel through that barrier (see figure 2.4 (b)). The
ionization rate for the tunnel ionization can be described by the Ammasov-
Delone-Krainov (ADK) theory[16]. It is an analytic approach to describe the
ionization rates of atoms in oscillating electromagnetic fields. The ionization
rate for linearly polarized light is given by

Γlin
ADK =

√

3(n∗
√

I)

πZ3

√
ID2

8πZ
exp

(

− 2Z3

3(n∗
√

I

)

(2.17)
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Figure 2.4: Illustration of the different ionization processes.

where n∗ = Z√
2EI

is the effective principal quantum number and D =
(

4eZ3

√
I(n∗4)

)n∗

. For circular light the formula becomes

Γcirc
ADK =

√
ID2

8πZ
exp

(

− 2Z3

3(n∗
√

I

)

(2.18)

These equations have a limited region of validity. For high laser intensities
which are higher than the intensity needed for barrier-suppression ionization
the ADK theory overestimates the ionization rate due to the Stark effect,
where an electric field shifts atomic energy levels.

2.3.3 Barrier Suppression Ionization

For even higher laser intensities the Coulomb potential will be lowered under
the ground-state energy level (see figure 2.4 (c)). The electron can escape the
potential and leaves the atom ionized. This process is called barrier suppres-
sion ionization (BSI).
The required intensity is given by[17]

IBSI

[

W/cm2] ≥ 4.0 · 109 IP [eV]4

Z2
. (2.19)

For atomic hydrogen with an ionization potential of Ip = 13.6 eV and Z = 1
the BSI threshold intensity is IBSI = 1.4 · 1014 W/cm2. Considering that the
focused laser field is on the order of 1017 to 1018 W/cm2 barrier suppression
ionization is the dominant ionization process in most of the cases described
in this work.
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2.4 Plasma Based Acceleration

In this chapter, the concept of plasma-based wakefield acceleration is dis-
cussed (for a more thorough review see for example [2]).
When an electromagnetic driver, an intense laser pulse or a relativistic elec-
tron bunch, propagates through a plasma it excites plasma waves. The field
expels electrons radially from the propagation axis. Due to their higher mass
ions stay at their position and are considered to form a static background.
This leads to the laser leaving behind a region of positive electric charge
created by this background. The electrons are attracted by this electric field
and oscillate around their starting position. An electron density modulation
is formed on axis, with a peak behind the positively charged region. This
plasma wave structure following the driver is called wakefield. The longitudi-
nal electric field, that is formed by the density modulation - negative charge at
the location of the electron density peak and positive charge at the ion back-
ground - can be used to accelerate particles. The electric field of the electron
plasma wave is on the order of E0 = cmeωp/e, or E0 [V/m] ≃ 96

√

ne [cm−3]
with the electron plasma frequency ωp and the electron density ne. Assuming
a plasma density of ne = 1018cm−3 the maximum field is E0 ≈ 100 GV/m.
This field is approximately three orders of magnitude higher than that of a
conventional radio frequency cavity, where the interaction of the field with
the cavity walls limits the field strength.
The accelerating electric field has a sinusoidal structure in the linear regime.
Figure 2.5 shows longitudinal electric field. Electrons can be inserted in front
of the peak at the back of the wakefield and will be accelerated under the
right conditions. The transverse electric fields are shown in figure 2.6. To
accelerate an electron bunch in the wakefields, it needs to be placed in the
accelerating phase of the longitudinal field as well as into the focusing phase
of the transverse field.

2.4.1 Advantages of Hollow Plasma Channels

To prevent loss of beam quality when injecting an electron beam into
a wakefield, the injected beam has to meet matching conditions. The
transverse beam size has to be matched to the transverse focusing force
in the wakefield and therefore to the plasma electron density. As the
beam with constant size gains energy during acceleration the focusing
forces have to be adjusted such that kβ = ǫn/(γσ2

x), where kβ is the
betatron wavenumber of the focusing force, ǫn is the normalized transverse
emittance, σx is the transverse beam size and γ is the beam particle energy[8].
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Figure 2.5: Schematic illustra-
tion of the longitudinal electric
field from a HiPace simulation.
From [18].

Figure 2.6: Illustration of the
transverse electric field in a
wakefield from a HiPace simula-
tion.From [18].

This problem can be avoided with the use of hollow plasma channels, as
they have beneficial properties. A hollow plasma channel has a limited or
no electron density on the propagation axis and a peak electron density on
a radius r around the axis. In this geometry, the transverse driver profile
and the transverse profile of the accelerating wake are independent of each
other. This consequently means that the accelerating gradient is transversely
uniform and there are no transverse forces due to background ions or on-axis
plasma electrons. A derivation of the transverse wakefields can be found in
[20] and in [8].
In [19] the authors show that with a hollow plasma channel the focusing force
can be controlled. They assume a non zero plasma density in the channel
center and find that the accelerating force is controlled by the density in the
channels wall nw, while the focusing force is determined by the density in the
channel nc. Figure 2.7 illustrates this by comparing the longitudinal electric
field (top) with the transverse focusing electric field (bottom) for different
density ratios. The longitudinal field stays the same for different ratios while
increasing the channel density increases the radial field gradient.
It is already experimentally shown, that such a hollow plasma channel can
be used for the acceleration of a positron beam. Gessner et al. [21] created a
hollow channel with 200 µm radius and accelerated a positron witness bunch
with it. In a different work from Gessner [8], an in-depth theoretical analysis
of the acceleration of electrons and positrons in a hollow plasma channel is
given.
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Figure 2.7: Longitudinal (top) and transverse (bottom) electric fields in a
wakefield created in a near-hollow plasma channel. From [19].





Chapter 3

The Hollow Laser Beam

In this chapter, the generation of a ring-shaped laser beam is explained. Dif-
ferent methods are described to achieve such a laser shape in section 3.1.
The chosen method, the spiral phase plate, is then simulated. The evolution
of the laser pulse converted into the ring shape is calculated. With the ob-
tained intensity profiles an electron density is calculated. Results from with
simulations are shown in 3.2.4.

3.1 Generation of a Hollow Beam

There are several methods of creating a hollow laser beam experimentally.
Some of which are introduced on the following pages.

3.1.1 Mode Conversion

Similar to the Gaussian (TEM) modes (compare chapter 2.1) there exist
different sets of solutions to the paraxial wave equation (equation 2.2), for
example Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) modes. Any
distribution can be described as a superposition of HG and LG modes with
appropriate weighting.

The Laguerre-Gaussian (LG) solutions to the paraxial wave equation
are given in equation 2.8 and are depicted in figure 3.1. The phase factor
exp (−ilφ) is the source for the dark center of the LG modes.
These LG modes can be written as a superposition of another set of solutions
to the wave equation, the Hermite Gaussian (HG) modes

14
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Figure 3.1: Transverse intensity distribution for the Laguerre-Gaussian and
the Hermite-Gaussian solutions to the paraxial wave equation taken form
[22].

uHG
n,m(x, y, z) =

CHG

ω(z)
exp

(

−ik
(x2 + y2)2

2(z2 + z2
R)

)

exp

(

−x2 + y2

ω2(z)

)

× exp
(

−(n + m + 1)
y

x
)
)

Hn

(
√

2x

ω(z)

)

Hm

(
√

2y

ω(z)

)
(3.1)

where Hn(x) and Hm(y) are the Hermite polynomials of order n and m,
respectively. LG modes can be transformed into HG modes via [23]

uLG
n,m(x, y, z) =

N
∑

k=0

ikb(n, m, k)uHG
N=k,k(x, y, z) (3.2)

with the factor

b(n, m, k) =

√

(N − k)!k!

2Nn!m!

1

k!

dk

dtk
[(1 − t)n(1 + t)m]t=0 (3.3)

This transformation behavior can be used to create an LG beam experi-
mentally [24]. The LG01 mode can be written as a superposition of the HG01

and the HG10 modes with a phase difference of π/2

uLG
0,1 (r, φ, z) =

1√
2

(

uHG
1,0 (x, y, z) + iuHG

0,1 (x, y, z)
)

. (3.4)

With the help of two cylindrical lenses, this mode conversion can be done
when using a HG10 mode rotated by 45◦ with respect to the lens axis as
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Figure 3.2: Setup of two cylindrical lenses to convert an HG input beam
into an LG mode. From [25].

input. This rotated mode can be written as a superposition of HG01 and
HG10 which are in phase. The phase can be shifted by π/2 exploiting the
Gouy phase of the two modes [24]. For this, the following conditions have
to be satisfied for the separation d and Rayleigh length zR of the incoming
beam.

d =
f√
2

(3.5)

zR = (1 +
1√
2

)f (3.6)

This technique for the creation of a hollow beam at FLASHForward is
not desirable mainly due to the need for an HG input mode. The required
HG mode could be created directly in the oscillator of the laser, but as
this component is extremely sensitive to alignment changing it is not advis-
able. Furthermore, instead of creating HG modes in the oscillator one could
directly create LG modes instead [26]. Since both methods require severe
changes in the laser infrastructure they will not be discussed any further.

3.1.2 Axicon Generated Bessel Beam

Another family of beams - Bessel beams - was proposed and experimentally
demonstrated by Durnin [27]. Bessel beams are suitable for the generation
of a hollow plasma channel as shown by Fan et al. [28] for example.
Starting from the wave equations

(

∇2 − 1

c2

∂2

∂t2

)

E(~r, t) = 0 (3.7)
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and the specification for the intensity to obey

I(x, y, z ≥ 0) = I(x, y) (3.8)

the Bessel beam was derived with an electric field of

E(r, φ, z) = A0 exp (ikzz)Jn(krr) exp (±inφ) (3.9)

where Jn is an nth-order Bessel function, kz and kr are the longitudinal
and radial wave vectors, with k =

√

k2
z + k2

r = 2π/λ. Figure 3.3 shows the
intensity structure of a zeroth-order Bessel beam (left) with the intensity
maximum on axis and a first-order Bessel beam (right). Higher order Bessel
beams have a phase singularity on axis, resulting in an intensity minimum on
axis. Bessel beams have the property of being diffraction-free, which means,
that the intensity distribution does not diverge during propagation [29].
Such a Bessel beam can be created with an axicon, by giving the beam a

Figure 3.3: Intensity distribution of 0th (left) and 1st (right) order Bessel
beams (from [29]).

conical wavefront. An axicon is a conical lens, which images a point onto
a plane. Illuminating the axicon with a Gauss beam creates a zeroth-order
Bessel beam. Higher order Bessel beams can be created by manipulating
the phase of the incoming beam (for example see Andreev et al.[30]). One
disadvantage of Bessel beams is that a lot of intensity will be transferred
not only into the first maximum but also to the smaller maxima. This and
the fact that axicons are generally very sensitive to alignment and need to
be relatively close to the focus makes this method of creating a hollow laser
beam uninteresting for FLASHForward. A variation of this method was used
in recent experiments at the FACET beamline at SLAC National Accelerator
Laboratory. Gessner et al. used a combination of a phase imprinting optic
called kinoform and a modification of an axicon called axilens to create a
high order Bessel beam ([21],[8]).
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Figure 3.4: Illustration of a spiral phase plate from [25].

3.1.3 Spiral Phase Plate

A spiral phase plate (SPP) is a thin, transparent plate usually made from
glass. This plate has an increasing thickness proportional to the azimuthal
angle φ around the optical axis. Since the phase shift of light passing through
material is directly proportional to the time it takes the light to pass through
it, this spiral phase plate introduces a phase factor. The factor, which is a
function of the azimuthal angle and reads exp (ilφ), is imprinted onto any
beam incident on the phase plate. The topological charge l is determined by
the following expression [31]

l =
∆n · h

λ
(3.10)

where ∆n is the difference in refractive index between the SPP and its
surrounding, h is the height of the step as depicted in the figure 3.4 and λ is
the wavelength of the incident beam.
The phase changes continuously from 0 to 2lπ with a round trip on any circle
around the center of the (ρ, φ)-plane. For every point on this plane there has
to be a point (ρ, φ + π/l). These two phases interfere destructively on the
beam axis resulting in a dark spot in the center of the intensity distribution.
A Laguerre-Gaussian beam (eqn. 2.8) is generated by this phase plate. Such
a mode is propagation invariant, meaning that the intensity distribution does
not change its general form during propagation except for divergence. Thus,
the phase factor can be introduced to the laser pulse anywhere in the beam
line, and it still exits after an arbitrary propagation distance. This makes
this method very interesting for the FLASHForward project. The interaction
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point with hydrogen is more than 50 m away from the compressor output and
the focusing optics produce a focal length of about 18 m. The phase plate
can, therefore, be placed in front of the vacuum compressor which reduces
the B-integral effect and the overall energy fluence in the SPP.

3.2 Simulating the Spiral Phase Plate

In this chapter, the effect of a spiral phase plate on the laser pulse is sim-
ulated. The intensity evolution in the focus is described and the electron
density created by the laser is calculated. For the FLASHForward focus a
setup with an effective focal length of f = 17950 mm is planned. The follow-
ing simulations will all be done using this setup.

3.2.1 Simulating the Phase Plate Effect on a Laser

Beam

For the simulation of optical setups a widely used program is the ray tracing
software ZEMAX. It takes the electrical field of light as input and calculates
its propagation through a defined setup of optics. The input field can be
chosen by the user to be a Gaussian laser beam for example. If the user knew
the electric field of his desired input beam he could give any beam to this
program.
The complex electric field of a laser beam can be calculated with a known
amplitude u and a known phase distribution φ (compare eqn. 2.1). In order
to simulate the effect of a spiral phase plate on the laser beam the phase
factor exp (ilφ) can be added to the initial phase.

Espiral = uinitial · exp (i (φinitial + φspiral)) (3.11)

The added spiral phase can be modified in order to see the effects of
different topological charges l. The creation of a phase distribution is shown
in figure 3.5, where the measured phase distribution from the laser acceptance
test was used as a realistic initial phase. Due to computational limitations,
the phase is approximated with 128 steps, instead of a continuous increase
in phase.

After calculating the electric field with equation 3.11 the laser pulse inten-
sity distribution is calculated by Zemax. At arbitrary propagation distances,
the intensity distribution can be exported for further calculations.
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Figure 3.5: This figure shows how the input phase for the Zemax simulation
were created. To the initial phase map (left) a spiral imprint (center) is added
to create the final phase map (right).

3.2.2 Optimal Conditions

When using focusing elements the intensity distribution at focus depends
on the input intensity and phase. To give a reference for simulations that
converge from the optimal input parameters - a flat phase and a Gaussian
intensity profile - the focus is calculated for these. Figure 3.6 shows the focus
intensity of the beam after the phase was altered in the way explained in
3.2.1 to resemble the effect of the spiral phase plate. The intensity profile is
shown 1 m around the focal plane. The Gaussian input beam has the form of
a Laguerre-Gaussian in the focus. The ring shape is visible throughout the
focus, while it is larger in front and after the focus. Therefore, the simulation
is expected to work as intended.

3.2.3 Realistic Phase Distribution

As the phase of a laser beam seems to have an influence on the far-field dis-
tribution, it is interesting to see, what effect a realistic laser phase has on
the focal spot. Therefore simulations were done with a realistic initial phase
distribution (see left plot in figure 3.5). This phase distribution was obtained
during the laser acceptance test of the 25 TW laser system from FLASHFor-
ward taken by the manufacturer Amplitude in France. Unfortunately, there
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Figure 3.6: Intensity profile around the focus for near optimal input con-
ditions of a Gaussian intensity and a flat phase.

is currently no way to measure the laser phase in the laboratory at DESY,
so no recent phase distribution is available for this simulation.
Figure 3.7 shows the resulting focus before, at and after focus. The focus did
not lose its hollow shape, but intensity shifted within the ring to create re-
gions with high intensity and regions with low intensity. Furthermore, there
is more energy in the diffraction rings especially in front of the focus.

Even though the central point is still without intensity and most likely
will produce an electron density distribution with some sort of hollow shape,
this pulse shape is only feasible for first testing experiments. The calculation
of the electron density performed in this work relies on the Abel transforma-
tion (see 4.2.2 for a detailed explanation) which assumes rotational symmetry
of the plasma column. Rotational symmetry around the central point is not
given in this case. An alternative to the use of the Abel transformation is
tomography. With this method, there would be no need to assume cylindri-
cal symmetry, but one needs data from at least two angles. Afterwards, the
electron density could be calculated by the use of the Radon transform. This
method is in use in medicine as computer-tomography scans.
The initial phase of the laser has to be controlled and changed to a flat phase
front. For this, a deformable mirror can be used and its implementation is
already planned. Such a setup consists of a mirror with piezo movers on
its back, which are able to deform the surface of the mirror slightly, thus
changing the phase front. The phase front is recorded by a wavefront sensor
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Figure 3.7: Simulation of the laser intensity distribution around the
FLASHForward focus for a realistic initial phase distribution.

somewhere behind the mirror. In an iterative process a computer analyzes
the measured wavefront and drives the piezo motors to compensate for er-
rors. Depending on the speed of this process, it can compensate for static
aberrations as well as dynamic aberrations.

3.2.4 Calculating the Electron Density

In this section, the laser intensity distribution is simulated for the FLASH-
Forward experiment. The laser is focused by a combination of two lenses.
This lens system has a effective focal length of 17950 mm. With the input
beam thickness of 45 mm the focus parameters are calculated. The beam
waist has a radius of 0.5 mm and the Rayleigh length is 660 mm long. The
reason for this long and shallow focus is the structure of the desired plasma
channel. The channel needs to be as uniform as possible, to have a constant
plasma background for the electron driver. Another reason is the structure
of the beamline. In order to couple the laser into the electron beamline
one needs this distance to get the laser onto the same axis as the electron
bunches. For a hollow channel this holds true as well.

Before showing the results from the simulation of the electron density,
the method of calculation is introduced.
The laser intensity profile in the x, y-plane at a position zi is given as
I(x, y, zi). At each point, the electron density is calculated based on the
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Figure 3.8: Relative electron density ne/n0 for a 25 fs laser pulse.

ADK ionization rate, which gives a probability for a hydrogen atom to be
ionized by a certain intensity.

Figure 3.8 shows the relative electron density expected from a τL = 25 fs
laser pulse passing through atomic hydrogen1. The absolute intensity of the
laser pulse is calculated from the counts F in the simulated intensity distri-
bution with

I(x, y, z) =
F(x, y)

∫

F(x, y)dxdy
· E(z)

τLA
(3.12)

with the total energy E(z) at the propagation step z and the area of interest
A. After each propagation step, the laser pulse will have less intensity for the
next position zi+1, due to the energy deposition into the gas. The simulation
tries to account for energy loss but neglects the influence of other factors. One
of the effects that could have an impact on the electron density distribution
is plasma defocusing, which is explained in section 2.2.4.
Figure 3.9 shows a lineout of the electron density at every propagation step as
an example of what an electron density looks like throughout the interaction.
In this case an energy of 90 mJ with a gas pressure of 2 mbar was used.

As the radius of the hollow channel has an impact on the accelerating
structure the radius at the focal point is calculated. The focal spot is marked
as z = 0 in figure 3.9. To see if it is possible to manipulate the radius by
varying parameters, simulations were performed for a range of parameters.
The first thing that is interesting is the use of different topological charges
for the phase plate. In the simulation the charges l = 1 − 5 were used. The

1The difference between atomic and molecular hydrogen ionization rates are discussed
in the master thesis by Gabriele Tauscher[18].
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Figure 3.9: Longitudinal lineout of the electron density created by a laser
pulse with E = 90 mJ, l = 1 at a gas pressure of 2 mbar

second thing being investigated is how the change of laser energy changes the
channels radius. Experimentally this is one parameter that is easily changed
either by the insertion of neutral density filters or a rotatable polarizer, such
as a λ/2-plate.
The last parameter to inspect is the pressure of the hydrogen the laser is
interacting with. Depending on the setup of the gas target this is also easily
changed by filling the gas reservoir with a higher pressure before releasing
the gas into the vacuum chamber.

Behavior of the Channel Radius

As a first approximation, the loss of energy is neglected. The electron density
is calculated solely based on the intensity distribution obtained from Zemax.
Although this is not physically correct, it gives a rough estimate how the
channel evolves for different laser pulse energies and different topological
charges of the SPP.
The first parameter scan runs at a energy of E = 120 mJ for topological
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charges l = 1 to 5. Figure 3.12 shows how the radius of the channel and the
thickness of the channel wall at the focal point evolves for the different phase
plates. In this plot, and in the following throughout this chapter, the inner
radius is defined as the distance between the center and the point where
density reaches exp (−2) of full ionization. Figure 3.10 shows a radial lineout
of a sample electron density distribution. The red line indicates the threshold
which defines the radius. The left crossing of the red line and the lineout
defines the radius. The thickness is defined as the distance between the two
crossings of red line and lineout. Lineouts are taken in x and y direction
(compare figure 3.11) resulting in 4 radius values. From these, the average
radius and a standard error are calculated.

Figure 3.10: Sketch of the defini-
tion of the radius.

Figure 3.11: Illustration of how
the radius is calculated in the sim-
ulations.

The topological charge of the phase plate has a strong impact on the ra-
dius. Increasing the topological charge by one increases the radius by 150µm
on average. Higher order Laguerre-Gaussian beams indeed have a larger ra-
dius, so these results match the expectations. As the thickness of the wall
stays constant, we can assume, that the intensity has to be distributed over
a larger area. This leads to a lower peak intensity and may lead to energy
depletion before ionizing the whole channel.

The second parameter scan for this first approximation is for the energy
done for l = 1. Radius and thickness of the wall were calculated for energies
from 30 mJ to 210 mJ. Figure 3.13 shows the results for the radius of the
channel and the thickness of the channel wall. Increasing the energy decreases
the channel radius, but not linearly like in the previous scan. The edges of
the channel wall have a higher intensity, therefore areas which did not have
enough intensity to ionize will now create a plasma and the radius decreases.
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Figure 3.12: Radius and thickness of the hollow plasma channel for different
spiral phase plate used. This figure shows a first approximation without
considering energy loss.

The thickness on the other hand increases for the same reason.

Figure 3.13: Energy scan in the plasma channel simulations. Radius and
thickness of the channel are plotted against the tested energies without en-
ergy loss.
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Energy Loss

The next step is to look at the evolution of the channel when one considers en-
ergy loss. After each plane (x, y, zi), the energy for the next plane (x, y, zi+1)
is calculated, based on the loss due to ionization:

E(x, y, zi+1) = E(x, y, zi) − neV (x, y, zi)Eion,pp(x, y) (3.13)

with the ionization energy loss per particle Eion,pp(x, y), the considered inter-
action volume V (x, y, zi) and number of particles ne per cm−3. The ionization
energy per particle for hydrogen atoms is given by:

Eion,pp(x, y) = 13.6 eV. (3.14)

Other effects, for example ionization defocusing (see section 2.2.4), are not
accounted for, which may lead to an underestimation of the energy loss.
The topological charge scan including the energy loss introduced above is
depicted in figure 3.14. The linear shape of the radius curve stays the same
but increases its slope. Increasing the topological charge by one increases the
channel radius by ∼ 200 µm. Due to the loss of energy during propagation,
the plasma channel wall thickness decreases with increasing charge. Since
the same start energy occupies a larger area the peak intensity in the wall is
lower. This leads to a lower thickness for higher charges l.

Figure 3.14: Radius and thickness of the plasma channel with an estimated
energy loss during propagation.

The energy scan with accounted energy loss also has the same general
relation between radius and energy (figure 3.13). Higher energies mean lower
radii and larger wall thickness.
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Figure 3.15: Energy scan with considered energy loss.

With the implemented feature of energy loss, the simulation can now
also be performed for different pressures. At FLASHForward the pressures in
the gas cell will be in the range 0.1 − 2 mbar. Therefore the simulations are
performed in this range with an energy of 120 mJ and charge l = 1. Figure
3.16 shows the result for the radius at the focal spot. A linear dependency
between radius and pressure is visible, but a much smaller one, than the
charge scan showed. Increasing the pressure by 2 mbar increases the radius
by around 20 µm. A higher pressure means, that there are more particles per
volume the laser can interact with. Therefore the laser loses more energy,
thus increasing the radius and decreasing the wall thickness.

Channel Evolution in Gas Cell

For the acceleration of electrons the hollow channel has to stay as constant
in radius as possible. This will be investigated in this section. Therefore,
the radius at the start of the 30 cm long gas cell (z = −150 in fig. 3.9) is
compared to the radius at the end (z = +150 in fig. 3.9).
The change in radius for the energy scan is plotted in figure 3.17.

For low energies the laser loses a lot of ionization strength while propa-
gating through of the gas cell. This manifests in the tripling of the radius at
90 mJ. Furthermore, for the simulation with 30 mJ and 60 mJ the radius at
the end of the gas cell could not be calculated anymore, because the initially
defined threshold for the radius was not reached. When creating a channel
with a constant radius one needs to increase the laser energy so that the
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Figure 3.16: Radius and thickness of the plasma channel for different gas
pressures. The energy loss approximation was applied.

Figure 3.17: This figure shows the increase of the channel radius in % of
the starting radius over a propagation distance of 30 cm for different starting
laser energies.

energy loss during propagation is negligible.
A similar nearly exponential trend is visible in the change in radius for the
pressure scan in figure 3.18. For low pressures the radius only changes on the
order of 10 percent but for higher pressures the radius triples in size. This
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is in line with our expectations. When more particles are available for the
laser pulse to interact with, the more energy it will lose over a given distance.
Thus increasing the radius more for higher pressures.

Figure 3.18: The increase of channel radius in % of the starting radius for
different hydrogen pressures.

The calculation of the radius increase for the topological charge scan is a
special case, as the energy of 120 mJ which was used, did not suffice to reach
the threshold at the end of the gas cell. Therefore the threshold was reduced
from the initial exp (−2) to 5% of full ionization for this calculation. The
comparison with the other results is lost, but as the general evolution has a
better visibility this step is justifiable.

With the reduced threshold for the charge scan, the radius increase is
shown in figure 3.19. Higher topological charges have a lower radius increase
than lower charges.

Conclusion from Simulations

The present simulations show the behavior of the electron density evolution
of a plasma generated by a hollow core laser beam. Scans for the laser
energy, the topological charge of the phase plate and the hydrogen pressure
were performed.
The general range of the channel radius has to be defined by the charge
of the phase plate, as this changes the radius the most. Minor changes
to the radius can then be done with energy and pressure. Using a higher
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Figure 3.19: The increase of the channel radius is plotted for different
topological charges of the spiral phase plate.

laser energy generally decreases the channel radius, while a higher hydrogen
pressure increases the radius.
When looking for a plasma channel, which has a constant radius throughout
the gas cell, the use of high laser energies seems plausible. Furthermore,
the pressure should be decreased as far as possible. In real experiments the
pressure gives little flexibility as it is chosen according to conditions for the
plasma acceleration. One can instead use a higher charge of the used phase
plate, which also minimizes the increase in radius.

For FLASHForward a good starting point for future experiments is the
use of a phase plate with topological charge l = 2 at an energy around
200 mJ. The electron beam waist is on the order of σx = 10 µm and has a
position jitter of 10 µm [7]. Comparing this with the experiment done at
FACET were the positron beam size is σx = 50 µm[21] and the position jitter
is 30 µm, where Gessner et al. used a plasma channel with a radius of 250 µm.
Assuming the same dimension the channel radius at FLASHForward can be
smaller, due to the smaller beam size. Assuming the smaller dimensions, a
channel radius of around 190 mJ seems promising. Comparing 3.19, we see
that for l = 2 the channel radius was around 210 mJ at 120 mJ. The radius
can be lowered by using a higher energy (fig. 3.17), which also helps to keep
the radius constant over the length of the gas cell. The overall extent of the
plasma is then around 1.3 mm in diameter, which would be suitable for the
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current design of the gas cell with a diameter of 1.5 mm.





Chapter 4

Methods and Experimental

Setup

This chapter gives an overview of the experimental setup and the different
methods being used. The plasma electron density is measured with a probing
interferometry setup. The first section 4.1 describes the laser system used
at FLASHForward and its characteristics in the experiments. Afterwards,
the plasma interferometry setup is explained and the data analysis process
is described in section 4.2. In the last section, a computational method to
estimate the electron density from a laser-intensity distribution along its
propagation is explained. With a setup for a laser focus scan, the intensity
evolution through the focus can be measured.

4.1 Laser Characteristics

4.1.1 FLASHForward Laser System

FLASHForward is a plasma-wakefield experiment located at DESY currently
under construction. Its goal is to produce electron beams from plasma wake-
field acceleration with energy at the GeV scale with sufficient quality for
driving free-electron lasers. A 30 cm long hydrogen plasma will be created
with a 25 TW laser, which is already installed and in use for LWFA exper-
iments and ionization test experiments. This 10 Hz titanium-sapphire laser
system utilizes the chirped pulse amplification (CPA) technique. CPA enables
the generation of high-intensity laser pulses, as it avoids the destruction of
laser beam quality, which may lead to damage of optics. Before passing the
multi-pass amplifiers the pulse is temporally stretched, thus reducing the
energy density. This technique uses light dispersion, the property of light

33
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having different phase velocities for different frequencies. After the amplifi-
cation, the pulse can be recompressed again to then be of very high intensity
and ultra-short duration. The FLASHForward laser consists of two amplifier
stages and can produce pulses down to 25 fs short pulse duration at a central
wavelength of λL = 800 nm with a bandwidth around 80 nm. Additionally
to the high power output with an energy of around 650 mJ the laser has a
low energy output with 3.5 mJ which only passes the first amplifier. The ex-
periments done for this thesis were performed with the aforementioned low
energy output of the laser system.

4.1.2 Spiral Phase Plate for Hollow Beam Creation

For the creation of a hollow laser beam as a source for the hollow plasma
channel a phase mask as described in section 3 is used.

The spiral phase plate (SPP) converts the Gaussian TEM00 mode of the
FLASHForward laser system into a Laguerre-Gaussian LG0n mode, where
n denotes the topological charge of the optic. For this work, a SPP with a
phase exp (inφ) and n = 1 was used. It might be useful to perform similar
experiments with higher topological charges, but for a first proof-of-principle
experiment these SPPs are too expensive. The SPP was manufactured by
the company SMOS1. The spiral structure is imprinted onto a quadratic
glass substrate of 50 mm side length. The round spiral structure itself has
a diameter of 45 mm and can therefore be used to transform both laser
beams, either the low energy beam (d ≈ 14 mm) or the high-energy beam
(d ≈ 45 mm).

In an ion exchange process silver atoms are inserted into the glass
substrate. This is done while submerged in a silver nitrate bath with an
applied electric potential at temperatures around 500◦. The local silver ion
concentration can be varied with a structured metal mask. With a higher
silver concentration the refractive index is increased, thus being controllable
by time and strength of applied potential. This process is not changing the
surface structure of the glass and can be done with precision around λ

10
.

The SPP was inserted into a Mach-Zehnder interferometer to verify it
indeed changes the phase as expected from simulations (figure 4.1). The red
circle in the center highlights the discontinuity, where a fringe splits up into
two. This indicates a phase jump of 2π. Therefore, the SPP is expected to
work as intended. This is also verified by figure 4.2 which shows the laser

1Smart Microoptical Solutions, http://www.smos-microoptics.de/
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Figure 4.1: Interferogram of the
spiral phase plate taken with a
Mach-Zehnder interferometer.

Figure 4.2: Camera image of the
laser focal profile after passing the
SPP.

far-field after transmission through the SPP. One clearly can identify the
ring shape of the focus, which is also expected from simulations.

4.1.3 Laser Energy Measurement

The laser is subject to shot-to-shot fluctuations. These include fluctuations in
energy, pointing, and pulse length. The laser energy determines the intensity
distribution in the focal area where the plasma is created. The energy is the
parameter most easily measured for each shot using a photodiode.
This diode2 is placed behind the last mirror in front of the focusing lens.
Light of every pulse is leaking through that mirror as the reflectivity is below
100 percent and will be observed with this diode. The created voltage of the
detector is measured by an oscilloscope, which visualizes and saves the signal.
A calibration measurement was performed in order to determine how a cer-
tain voltage signal transfers to the laser energy. As a calibrating tool an
available energy meter3 with a measuring head4 was used.

Approximately 250 shots were taken for six energy settings on the diode
while for the same time the energy meter collected shot energy data. To vary
the intensity of the laser, neutral density filters were inserted in front of the
low energy compressor. Filters with a neutral density of 0.1-ND, 0.2-ND, 0.4-
ND, 0.5-ND and a combination of those leading to 0.8-ND were used.
After subtracting the background from the diode signal it was integrated

2Thorlabs DET36A - Si Detector
3gentec-eo Maestro
4gentec-eo QE50LP
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Filter E [mJ] σE [mJ] Diode signal [Vs] Diode error[Vs]
0 2.9155 0.0899 1426.3 65.1

0.1 2.4905 0.0678 1236.9 57.4
0.2 2.0021 0.0638 1018.0 45.3
0.4 1.3803 0.0455 729.7 31.4
0.5 1.1865 0.0423 650.9 28.9
0.8 0.695 0.0230 460.2 23.1

Table 4.1: This table shows the results of the diode calibration measure-
ment. For different filter settings data was taken with the energy meter and
with the diode simultaneously. This data is shown with the corresponding
standard deviations.

over the entire signal. Table 4.1 gives the results of the measurement.
From the data and graph 4.3 it is visible that there is a linear behavior

between the integrated diode signal DS and the measured energy E. There-
fore a linear regression was performed to get the conversion factor from diode
data to laser shot energy. The linear regression yielded the following result
for the energy and its standard error σE:

E = 2.3262 · 10−6DS − 3.5415 · 10−4

σE = 1.3494 · 10−7DS + 9.5658 · 10−5 (4.1)

With these formulas it is now possible to calculate the energy for every
recorded shot.

4.1.4 Measuring the Pulse Length

The pulse length is measured with a technique called "Grating-eliminated
no-nonsense observation of ultrafast incident laser light electrical-fields"
(Grenouille), which is used for ultrashort pulse length from about 20 fs to
180 fs.

The Grenouille generates and maps two information of the beam. A cylin-
drical lens focuses the incoming beam on the vertical axis onto a thick second
harmonic generating (SHG) crystal. Because the crystal is hit under various
incident angles it acts as a spectrometer and splits up the wavelength of the
pulse in the y-direction. On the horizontal axis a fresnel biprism placed after
the first lens splits the beam up in two beamlets. These overlap inside the
SHG crystal such that the initial beam combines with itself again. Only where
the two beams overlap a signal is generated, thus the beam delay is mapped
horizontally, which is also known as self-gating. After passing through the
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Figure 4.3: This graph shows the data for the diode calibration and a linear
fit, obtained from a linear regression

crystal a second cylindrical lens images the signal onto a camera with the
spectral information on the vertical axis and respective delay information on
the horizontal axis. With this trace a phase-retrieval algorithm can match
the complex electric field of the light pulse, from which the pulse length is
deduced. Further information about the Grenouille can be found in [32] or
[33].
The present measurements were done with a SwampOptics Grenouille 8-20-
USB.

4.2 Plasma Interferometry

4.2.1 Experimental Setup

The experimental setup is shown in figure 4.4. The incoming laser beam is
divided into two beams by a backside-polished mirror, which reflects over
99% into the plasma generating path (pump) and transmits less than 1%
into the imaging path (probe). The pump beam propagates into the vacuum
chamber after being focused by a f = 150 mm focal length lens. The lens
is mounted on a xyz-stage outside the chamber, so the focus can be moved
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contain the plasma signal and reference light. This creates an interference
pattern when the optical path length of both arms are equal. This interference
pattern gives information about the phase difference created by the plasma
and is imaged on a CCD camera. The size of the fringes depends on the angle
between the two recombined beams.
In order to measure the resolution of the imaging system and the size one
of the pixels of the interferometer camera is having on the imaging plane,
a 1951 USAF resolution test target from Thorlabs according to the MIL-S

50A standard is used. Imaging this target on the imaging plane, where the
plasma will be observed, makes it possible to determine the pixel size and the
resolution of the system. The target has lines printed onto it, with known size
and distance to each other. Counting the pixels of a line on the image gives
the pixel size on the detector. Doing so yields a pixel size of 0.510±0.039 µm

px
.

The resolution limit is determined by the contrast of the lines and the space
between them. One possible criterion to determine the resolution limit is the
Rayleigh criterion, which calls for a 26.3% [34] dip between two maxima in
order to distinguish those two peaks. With this criterion, the resolution limit
of the optical system is 4.9 ± 0.4 µm.

Light propagating through a medium with higher refractive index than
vacuum will have a longer optical path length s = ηct. This will result in
a phase change of the light traveling through the plasma. From equation
2.13 follows, that the refractive index of plasma is lower than that of vacuum
ηvac > ηp. Therefore, light passing through the plasma will have a lower phase
shift. This phase shift can be written as ∆φ = 2π

λL

(∆svac − ∆sp). The beam
passing the medium will have its phase shifted with respect to the wavefronts
passing the same optical path in vacuum. With the plasma refractive index
(2.13) inserted the phase change can be approximated by

∆φ ≈ π

λL

∫

L

ne(l)

nc

dl (4.2)

This phase difference is called fringe shift and it is dependent on the plasma
electron density ne. From this measured fringe shift one can later calculate
the electron density as is described in the next section.

4.2.2 Phase Retrieval and Abel Inversion

Extracting the phase information from the interferometry picture can be
done following Takeda et al. [35].
The input fringe pattern is of the form

g(x, y) = a(x, y) + c(x, y) exp (2πif0x) + c∗(x, y) exp (−2πif0x), (4.3)
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Figure 4.5: Overview of the phase retrieval process. The input fringe pat-
tern a) is Fourier transformed into b). The spatial frequency is filtered out
and moved to the center of the Fourier space c). The phase shift d) is ob-
tained from the inverse Fourier transform. Illustration from [18].

where

c(x, y) =
1

2
b(x, y) exp (iφ(x, y)). (4.4)

The desired phase information is in φ(x, y), while a(x, y) and b(x, y) are
unwanted background variations and f0 is the underlying spatial carrier fre-
quency. To extract the phase information one starts by performing a fast-
Fourier-transform (FFT) algorithm on the input data (fig. 4.5a)) and gets

G(f, y) = A(f, y) + C(f − f0, y) + C∗(f + f0, y), (4.5)

with f as the spatial frequency in x direction, while A and C denote the
Fourier spectra. In figure 4.5b) the Fourier transformed data is shown. The
spatial frequency is visible in the center and the Fourier spectra are on the
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left and right side of it. The spatial frequency and the Fourier spectra can
be separated. This can be done because the spatial variations a(x, y), b(x, y)
and φ(x, y) are slow compared with f0. After filtering out the background
variation a(x, y) one of the two signals on the carrier (C(f ± f0, y)) can
now be separated and shifted to the origin (fig. 4.5c)) to obtain C(f, y).
Computing the inverse Fourier transform of C(f, y) with the FFT algorithm
one gets c(x, y) from equation 4.4. Calculating the complex logarithm then
gives the wanted phase in the imaginary part (figure. 4.5d)). This phase is
indeterminate to a factor of 2π. The phase can be correctly calculated with
the unwrap function in Matlab. This function looks for phase jumps greater
than π and corrects the phase on these points by adding multiples of ±2π.

This phase retrieval fringe pattern analysis is done for the background
pictures and the plasma pictures. Afterwards, the plasma phase shift is sub-
tracted by the background phase. In the end the electron density can be
calculated with the Abel transformation. The Abel transform calculates the
shape of a 3D object with the measured line-of-sight integrated signal, or in
other words the projection onto a plane. The only assumption made is that
the object has a radial symmetry. As the phase shift φ(x) is a projection
of a 3D plasma, which should be radially symmetric, the electron density
distribution ne(r) is reconstructed numerically with the Abel transform [36]

φ(r) = − 1

π

∫ R

r

dφ(x)

dx

dx√
x2 − r2

. (4.6)

Bringing equation 4.2 to the form

φ(x) = − 2π

λnc

∫ R

r

ne(r, x)
r√

r2 − x2
dr (4.7)

makes it usable for the Abel transform which results in

ne(r) =
λnc

π2

∫ R

r

dφ

dx

1√
x2 − r2

dx. (4.8)

Using equation 4.6 the electron density is finally given by:

ne(r) =
λnc

π
φ(r). (4.9)

4.2.3 Laser Focus Scan

In order to compare the experimentally measured plasma shape with a the-
oretical prediction (compare chapter 3.2) the focus evolution is measured.
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For a laser focus scan the plasma generating lens is moved upstream by ap-
proximately 10 cm. A CCD-camera on a motorized stage directly records the
laser intensity profile along the propagation direction of the laser through the
focal area. At the start of the plasma measurement a focus scan is performed
for the laser beam with and without the SPP inserted. Over a distance of
roughly 2 mm the motor moves in 100 steps. On every step the camera saves
20 images of the focus and 20 images of the camera background light.



Chapter 5

Results

In this chapter, the results from the performed experiments are shown. First,
the laser focus scan is analyzed and a calculation of the expected electron
density (sec. 5.1.2) from this scan is shown. The next section is explaining the
experimental results from the plasma interferometry measurements. Section
5.3 describes the ionization text experiment for the plasma channel used in
FLASHForward and explains why that experimental setup was not used in
this work.

5.1 Laser Parameters

5.1.1 Pulse Length Measurement

For the calculation of the laser pulse length, traces for 100 shots were saved
from the Grenouille measurement. The retrieval algorithm analyzed all of the
stored traces. The used code works with an iterative process to minimize the
retrieval error. Several different retrieval algorithms are included, switching
to another one if the error is too large. As it is an iterative process, every
time this code analyses a Grenouille trace it will calculate a different pulse
length. Therefore, the code was run three times to have a larger sample size
for a fit with a probability distribution.
The best fitting probability distribution is the generalized extreme value
distribution1. The data points and the fit with the probability distribution
are shown in figure 5.1. The mean value and the standard deviation obtained
from that distribution are τ = (27.2 ± 4.3) fs.

1This was found by using all pdfs included in Matlab. The interested reader will find
information and references at https://en.wikipedia.org/wiki/Generalized_extreme_value_
distribution.

43
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Figure 5.1: Pulse duration retrieved from the Grenouille traces plotted as
a histogram. A probability distribution is fitted to the data points.

The Grenouille was set up about 2 m before the experimental chamber.
Thus the pulse length is increased due to the further propagation in air
as well as the plasma generating lens and the window before the vacuum
in the chamber. The pulse broadening can be calculated from the group
velocity dispersion (GVD) according to [37]. 2 m of air add approximately
0.14 ± 0.02 fs, the lens has a thickness of 5 mm and adds 5.5 ± 0.41 fs
and the 3 mm thick window adds another 1.2 ± 0.1 fs. The pulse length
at the interaction point with the hydrogen is approximately (34.04 ± 4.83) fs.

5.1.2 Laser Focus Parameters

A focus scan was performed as described in 4.2.3 for the two beam settings,
one with and the other without the spiral phase plate. For every motor posi-
tion the camera took twenty pictures throughout the laser focus. Background
images were saved as well to correct the data for background light. Figure
5.2 shows the evolution of the unmodified beam in the focal region. The evo-
lution of the hollow beam through its focal area is shown in figure 5.3. There
is a distinct difference between the two beam modes. The beam without the
SPP has a point-like focus. This behavior is expected from the Gaussian
beam optics. The focus of the beam with the phase plate has a ring-shaped
intensity distribution. The center of the focus has less intensity and around
it there is an annular region of higher intensity. This intensity distribution
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is comparable to the Laguerre-Gaussian beam, with the difference, that this
beam does not have zero intensity on axis.

Figure 5.2: Intensity distribution throughout the focal region of the laser
beam. The top row shows the beam intensity profile in counts. The bottom
row shows the radially averaged lineout in counts.

Figure 5.3: Evolution of the intensity distribution throughout the focal
region of the hollow laser beam.

The radial evolution over the scanning distance is shown in figure 5.4
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and in figure 5.5 for the unmodified and the hollow beam, respectively. For
these plots, the images on every motor position were averaged and their
background was subtracted. The center of mass was then calculated and the
images were radially averaged. This procedure makes visualization easier but
also averages out any asymmetries. The full-width half-maximum radius is
plotted for every propagation step. For the hollow beam the inner radius
is plotted in addition. Fitting a hyperbola on the data points allows us to
calculate the focus parameters.
The beam waist for the unmodified beam is ω0 = 8.11±0.94 µm and from the
fit (see fig. 5.4)it follows that the Rayleigh length is zR = 131.74 ± 1.96 µm.
The outer beam waist of the hollow laser beam is ω0,outer = 15.74 ± 2.16 µm,
while the radius of the inner region is ω0,inner = 3.44±1.34 µm. The Rayleigh
length of the hollow beam is zR = 159.49 ± 1.99 µm, which is also obtained
from the fit visible in figure 5.5. The focus of the hollow beam has a larger
beam waist, which is expected from the theory when comparing a Gaussian
beam and a Laguerre-Gaussian beam.

Figure 5.4: Half-width half-maximum radius on every propagation step for
the normal beam with a hyperbola fit.
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Figure 5.5: Half-width half-maximum radius on every propagation step for
the hollow beam with a hyperbola fit. The outer radius is shown in blue and
the inner radius of the hollow beam is shown in yellow.

Comparing of the Beam Modes

The hollow laser beam and the unmodified beam can be compared in terms of
their shape. From the focus scan the intensity distributions from both beams
(fig. 5.4 and 5.5) are compared at the same propagation step. For the follow-
ing consideration, the intensities at z0 of the unmodified beam were chosen.
The beam without phase plate was filtered by additional 0.5ND, due to atten-
uation of the SPP. Furthermore, the spiral phase plate reflects a part of the
laser beam. This loss due to reflection can be taken into account by correct-
ing for the energy measured via the photo diode. The energies for the same
filter settings with and without phase plate are compared. With the same
filtering setting the phase plate energy was ESPP = E0 · (0.8833 ± 0.0054).
This was accounted for as well before continuing the consideration.
The center of mass was determined and the radial average around that point
was calculated. Afterwards, the intensities were normalized to the maximum
intensity of the unmodified beam.

Figure 5.6 shows the radial averaged and normalized distribution of in-
tensity for the two beams. The maximum intensity of the hollow beam is
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Figure 5.6: Comparison of measured beam intensity with and without spiral
phase plate.

ISPP = 0.2772 · I0. With this information, the measured electron densities
created by hollow beam and unmodified beam can be compared with each
other. Comparing this result with the theoretically expected result, which
is depicted in figure 2.2, shows, that the measured factor is lower than the
expected of 0.4289. A few possible source for error come to mind. One factor
could be the working principle of the phase plate. The phase increase by 2π
around the axis is only viable for the design wavelength of 800 nm. As the
laser has a spectral width of around 70 nm the efficiency is lowered. Another
factor is the unmodified beam. As pointed out in 3.2.3 the laser phase has to
be as flat as possible to create a uniform hollow beam, which might not be
the case.

Strehl Ratio

The quality of an optical system is often times corrupted by aberrations2,
which are caused by optical misalignment or errors in optics. They prevent
the laser to focus onto a point. A perfect optical system is only limited by
diffraction over the aperture of the system. The intensity of the non-hollow
beam in an optical system without aberrations and the measured intensity
are compared in figure 5.7. A measure for the quality of the optical system
is the Strehl ratio. It compares the intensity distribution of an unaberrated

2For further information about aberrations see for example [38]
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Figure 5.7: Illustration for the Strehl ratio. Image a) shows the focus spot
of the laser beam. The Airy pattern expected from a perfect Gaussian beam
is shown in b). Figure c) compares the radial average of the laser focus and
the Airy disk, while the encircled energy is shown in figure d). The shaded
area represents the radius at which the first theoretical minimum is reached.

beam, represented by the Airy disk (figure 5.7b)), with a measured intensity
distribution (fig. 5.7a)). It takes values from 0 to 1, with 1 being a perfect
optical system without aberrations.

In order to obtain the Strehl ratio of the optical system used in the
experiments, either the maximum intensity of the focus or encircled energy
within the first minimum of the theoretical profile can be compared. The
theoretical radial average has a higher intensity between r = 2 µm and r =
8 µm. Comparing the integrated area to the first minimum shown by the
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yellow area gives a Strehl ratio of 0.78±0.047, where the error was estimated
from the radial average. Figure 5.7d) shows the encircled energy fraction. The
encircled energy fraction is higher for the measured intensity profile until a
radius of r = 9 µm.

Simulating Expected Electron Density from Focus Scan

The expected electron density can be simulated with the measured inten-
sity data from the focus scans. Comparing the electron density obtained by
this simulation with the measured electron density obtained from the Abel
transformation of the interferometry data might show errors in either the sim-
ulation or in the data analysis. The electron density is simulated the same
way as in section 3.2.4. The simulation was performed with an energy com-
parable with the energy used in the experiments shown later in this chapter.
Figure 5.8 shows the electron density simulated from the laser focus scan
of the unmodified beam with an energy of 0.9 mJ at a hydrogen pressure of
200 mbar. The electron density from the hollow laser beam is shown in figure
5.9 which was calculated with the same input energy and gas pressure. The
radial average was calculated for better visualization. The expected radius
at the beam waist of the channel of the hollow core plasma is calculated to
5.88 ± 0.92 µm at the waist. The inner radius of the channel has a width of
1.12±0.22 µm, which increases to 4.76±0.71 µm over a propagation distance
of 0.44 mm. The unmodified beam has a smaller expected radius (compare
figure 2.2) for the same assumed peak intensity. In this simulation, the same
initial energy was assumed. Therefore, the peak intensity of the hollow beam
is lower than that of the unmodified beam. Nevertheless, the radius of the
unmodified beam is 5.32 ± 0.51 µm at the waist, which is smaller than the
waist of the hollow beam. The higher intensity in the peak of the unmodi-
fied beam leads to a longer plasma channel, as the intensity falls below the
ionisation limit later than in the hollow case.
The calculation of the electron density with the hollow laser beam shows, that
the radius of the central region is very small. Detecting this small radius with
the interferometry setup and being able to calculate it with the Abel transfor-
mation might turn out to be difficult. The interferometry setup, on one hand,
is limited by the resolution of the optical system. The Abel transformation,
on the other hand, relies on the rotational symmetry. The optical axis has
to be set and deviations from it cause further errors in the calculations of
the electron density. A plasma channel, which is not rotationally symmetric
increases the error even further.
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Figure 5.8: Electron density calculated from the measured laser intensity
from the focus scan. The beam is not influenced by the spiral phase plate.
The energy used in the calculation is 0.9 mJ. The laser is propagating from
left to right in this figure.

Figure 5.9: Electron density calculated from the hollow laser beam focus
scan. The energy used in the calculation is 0.9 mJ. The laser is propagating
from left to right in this figure.
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5.1.3 Conclusion from Laser Focus Scan

The laser beam was successfully transformed into a hollow shape by the use
of the spiral phase plate, which is visible throughout the focal region (figure
5.3). Nevertheless, the shape of the hollow laser beam could be improved.
The initial phase distribution of the laser beam has to be flat and aberrations
have to be avoided. This can be avoided by implementing an adaptive optic
such as a deformable mirror. During alignment, it was also noticed that the
focus could be significantly influenced by lens misalignment, up to a point
where a ring-shape was no longer observable.

The simulation of the electron density shows that the hollow channel is
very narrow. It might not be visible in the experimental measurement of the
electron density. The inner channel diameter at waist is only around 3 µm,
which is lower than the resolution of 4.9 µm in the employed optical setup
(see section 4.2.1). At the start and the end of the plasma channel the inner
diameter is around 10 µm and therefore might be visible in the measurements.

5.2 Electron Density Obtained from Plasma

Interferometry

In this section, the results from the plasma interferometry are presented.
From the simulation in chapter 3 we know that the radius of a plasma
channel and its evolution is mostly influenced by the laser energy and the
topological charge. Due to its cost, we only have a phase plate with l = 1
available. Therefore, the experiment is limited to a scan of the energy. The
energy of the plasma generating beam was varied between approximately
0.3 mJ and 3.2 mJ, where the energy was measured as described in section
4.1.3. In order to know where the laser focus is located with respect to the
field of view of the interferometer camera, shadowgraphy was used. When
blocking one arm of the interferometer the plasma appears as a dark region
on the camera. The vacuum focus of the laser is then expected to be at the
location where only a point-like plasma is visible. The energy was reduced
as much as possible while still being able to see the plasma on the camera.
The center of the smallest visible plasma defines the vacuum focus point of
the laser. The vacuum focus is marked as z0 in the following images. It was
found by fitting an ellipse onto the shadow of the plasma, where the centroid
in z-direction is assumed to be the vacuum focus position. At the lowest
energy setting the plasma still has an extend of over 400 µm, so accordingly,
the error in the determination of the position of the vacuum focus is on the
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order of 100 µm.3

Afterwards, the setup was switched to the interferometry measurement
and a set of data was taken at various energies for the two beam modes,
unmodified and hollow. A second set of images was then taken after moving
the plasma generating lens downstream, in order to image the beginning of
the plasma. This was motivated by the fact, that the field-of-view of the
camera turned out to be small compared to the plasma columns generated
at higher energies.

5.2.1 Temporal Plasma Expansion

The experimental setup features the possibility to delay the imaging path
with respect to the plasma generating path. This enables the observation of
the plasma expansion.
The scan was performed with an average energy of E = 2.8 ± 0.27 mJ with
the spiral phase plate inserted into the beam path. The length of the imaging
path was increased by 14.8±0.3 ps between two measurements with the delay
stage (see figure 4.4).
When looking at the radius of the plasma column one can estimate the

Figure 5.10: Radius at a propagation step in its temporal evolution.

thermal expansion. The maximal delay scanned with the increase of the
imaging path length is 210 ps. The mean thermal velocity of hydrogen is

calculated by vth =
√

8kBT
πmH

. Assuming hydrogen at room temperature it is

3This method can be improved in future experiments by mounting the plasma gener-
ating lens onto a motorized stage. Performing a scan of the shadowgraphy method over
the field-of-view lets one assign the motor position to the vacuum focus position.
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vth = 1756m
s

= 1.756 ·10−3 µm
ps

. The thermal expansion is then on the order of
0.5 µm and as the pixel size of the camera is only 0.51 µm this is not observ-
able. Note, that the time scale of the expansion of electrons is shorter than
for the considered hydrogen atoms.
Figure 5.10 shows the radius of the plasma channel for the different delays.
The radius was defined as the exp (−2) value of the maximum electron den-
sity. The radius is constant within the error bars. The time scale of the plasma
expansion is either smaller or larger than the time scale of the delay scan.

5.2.2 Plasma Generated by Hollow Beam

The energy was scanned from around 0.3 mJ to around 2.8 mJ. This was
done by adding neutral density filters in front of the air compressor, in order
to not change the temporal shape of the pulse after the compressor. For
every filter setting 25 interferometer images were taken. A reference image
of the imaging beam without a plasma signal was saved for the background
subtraction in the analysis. The background from the ambient light was
saved as well. The interferometer images were processed as described in
section 4.2.2.
Figure 5.11 shows the averaged electron density at two energy settings.
The top half shows the average electron density retrieved by the Abel
transformation for an energy of 1.008 ± 0.175 mJ. The bottom half shows
the density for an energy of 0.469 ± 0.143 mJ.

Unfortunately, no dip in electron density is visible on the axis at r = 0 µm.
From the simulation of the electron density with the intensity distribution of
the focus scan, this result was already expected. At the lowest energy shot it
was assumed, that a hollow channel could be observed. The intensity on the
axis is at its lowest and thus the least probable to ionize the hydrogen. This
was not the case, as the focal length of the plasma generating lens seems
to be too short, therefore making the beam waist to narrow to observe the
hollow structure. Several reasons are possible here. The resolution limit of
the imaging system is 4.9 ± 0.4 µm. If the simulation from the focus scan
can be trusted, the inner channel radius is on the order of 3 µm. Therefore,
the inner channel might not be resolvable. A second possible source for
errors is the assumption of rotational symmetry, which is required for the
Abel transformation. For the calculation the center of the plasma channel
has to be chosen. At a pixel size of 0.510 ± 0.039 µm

px
being off by a few pixel

while setting the center is a large source of error. While it can not be ruled
out that a hollow plasma channel was created, it was not possible to detect
it in this setting. Before starting the experiment the lowest energy was set



5. Results 55

Figure 5.11: Comparison of two electron densities at different energies.
Both plasma channel were created with the hollow laser beam propagating
from right to left.

as that energy, where no signal could be seen on the interferometer camera
by eye anymore. In retrospect, images should have been taken at lower
energies and checked if an electron density is visible after the data processing.

The evolution of the channel radius during the energy scan is shown in
figure 5.12. Every row represents a different measured plasma signal at a
different energy. The radius was determined at the position where the elec-
tron density is 2.5 · 1018 1/cm3, which is half of the maximal density obtain-
able from 200 mbar hydrogen. As expected the radius increase with higher
energies. Starting with a maximum radius of 3.12 ± 0.31 µm at an energy
of 0.323 ± 0.048 mJ, the radius increases to 16.4 ± 1.5 µm at an energy of
2.763 ± 0.249 mJ. As the energy increases the beginning of the plasma is
shifted more and more upstream. The intensity of the laser beam is sufficient
to create a plasma earlier during its propagation at increasing energies. From
the simulations of the short focal range we expect a more or less symmet-
ric expansion of the plasma in both propagation directions from z = 0. In
the radius figure 5.12 we notice that the plasma ends at roughly the same
propagation distance at all energies. This is not explainable with the energy
loss by ionizing the hydrogen alone. At least a second effect acts on the laser
pulse. This could be plasma defocusing (see 2.2.4), an effect diffracting the
laser pulse while propagating through a plasma with a radial gradient.
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Figure 5.12: The figure shows the radius of the plasma channel at every
propagation step for every energy shot of the hollow laser pulse.

5.2.3 Plasma Generated by Unmodified Beam

A second scan of the energy was done without the spiral phase plate inserted
into the beam path. The plasma generated from this different laser profile
should be distinguishable from the one described above. From the shape
of the pulse depicted in figure 5.6 a plasma channel with lower radius and a
higher electron density is expected for the same input energy. If this is visible
conclusions can be made about the radial shapes of the plasma.
In figure 5.13 the electron density for both beam cases is compared at a
similar energy of 0.44 ± 0.14 mJ for the normal (top) and 0.47 ± 0.14 mJ for
the hollow beam (bottom). Again the averaged electron densities are plotted,
where the laser beam is propagating from right to left. A full comparison of
the generated plasma is not possible, as the first parts of the plasma were
outside the field-of-view of the camera. But nevertheless, it is visible, that
both channels have a comparable length. The laser intensity seems to be
too low to ionize before even reaching the vacuum focus of the laser at the
propagation distance z = 0. Again, this can not be explained by energy loss
due to ionization alone but has to be related to ionization defocusing.

5.2.4 Location of First Plasma Formation

As the hollow character of the plasma channel was not observable at the
vacuum focus position of the laser beam, the plasma generating lens was
moved downstream, in order to image the beginning of the plasma. Due to
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Figure 5.13: Comparison of two electron densities at the same energy, but
for different generating beam geometries.

the short focal length a shift of around 1 mm of the lens increases the radius
of the hollow laser beam by at least a factor of 2. At the beginning of the
plasma the hollow shape should be well observable. The intensity off-axis is
higher than on axis, so once the intensity off axis is high enough to ionize
the hydrogen, the hollow shape should appear.

Figure 5.14 shows the electron density with the shifted lens position.
The top half shows the plasma generated by the unmodified beam with
1.46 ± 0.20 mJ, while the bottom half shows the electron density generated
by the hollow beam with 1.40 ± 0.19 mJ. At this position of the lens,
imaging the start of the plasma channel, a clear difference between the
two beam modes is visible. The beam created by the hollow laser beam
has higher electron density off axis than on axis. This is a strong indicator
that a hollow channel was created, at least at the start of the plasma
channel. Later, during the propagation of the laser, the on-axis intensity
is high enough to ionize the hydrogen as well and the hollow character
is lost in our observation. On the other hand, the electron density of
the channel created by the Gauss beam, also has electron density off
axis between z = 150 µm and z = 500 µm. When looking at the laser
profile 1 mm in front of the focus (figure 5.15) one notices, that the laser
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Figure 5.14: Comparison of the plasma channel created by the unmodified
laser beam (top) and the hollow laser beam (bottom). The laser propagates
from right to left.

Figure 5.15: Laser profile for the unmodified beam 1 mm in front of the
focus.

beam has almost a ring-like profile even without the phase plate. It is
not entirely clear where this structure is coming from, but it seems that
the off-axis electron density peak is caused by this laser intensity distribution.

Figure 5.16 shows the radial evolution of the electron density for
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Figure 5.16: Electron density lineout for every measured energy at the
beginning of the plasma.

increasing energies generated by the hollow beam. A lineout was taken at
the same position z = 765µm for every measured energy. Even though the
electron density is far from full ionization a general trend is visible. An
inner channel can be observed for all five energies. With increasing energy,
the inner channel gets narrower and the total extend of the plasma gets wider.

Figure 5.17 shows an overview of all measured plasma channels, where
the laser propagates from right to left. For every propagation step at every
shot the radius of the plasma channel is plotted. The radius was determined
at the position where the electron density is 2.5 · 1018 1/cm3. The top left
figure shows the plasma channels created by the hollow beam at the initial
plasma generating lens position (compare section 5.2.2). The top right plot
shows the plasma channel created with the hollow beam with the shifted
lens position. The bottom plots show the plasma channel created by the
unmodified beam at the same lens positions. The expansion of the plasma
with higher energies can be observed from this orientation of the four plots.
With higher energies the plasma expands asymmetrically in both directions.
More plasma is generated earlier during the propagation of the laser. This is
the same effect as explained earlier. With a higher laser intensity the plasma
can be generated at an earlier position.









Chapter 6

Conclusion

6.1 Summery

In the present work, the generation of a hollow core plasma channel was
studied. Several techniques were analyzed (section 3.1.1 and 3.1.2) and the
most promising for the FLASHForward case was selected. With the use of
a spiral phase plate (sec. 3.1.3) the laser pulse is transformed into a ring
shape. The intensity distribution during the laser pulse propagation was
simulated with the ray-tracing software Zemax in section 3.2. Using the
obtained intensity maps the electron density was calculated varying the
input parameters demonstrated that the topological charge of the phase
plate has the biggest impact on the inner radius of the created hollow plasma
channel. A higher charge will result in a larger radius. The laser energy can
also vary the radius, but to a smaller degree as it just changes the area of
the pulse in which ionization occurs.

An experiment was performed with a spiral phase plate with a topological
charge of l = 1 with a testing setup, which had a different focusing geometry
than used in FLASHForward. The laser pulse shape was measured during
a focus scan (sec. 5.1), in which a ring shape was visible through the focal
region. During the ionization experiment in hydrogen, the hollow shape could
only be observed in a limited region (sec. 5.2). Only at the location of the
first plasma formation and for energies above 0.9 mJ a hollow plasma channel
was visible. The intensity of the laser pulse in the off-axis regions has to be
high enough to ionize the hydrogen, while the inner part is not able to do
so. This was only fulfilled in regions away from the vacuum focus spot of the
laser. There are several reasons why the hollow character of the plasma could
not be observed, including the resolution of the imaging system, the small
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focal length of the plasma generating lens, and the phase front of the laser
pulse being not flat.

6.2 Outlook

The experimental work done in this thesis is far from optimal, as it is not
resembling the plasma channel used in FLASHForward. The next step, of
course, is testing of the hollow beam concept in the ionization test chamber
with the correct focus geometry. Therefore, the ITC is currently redesigned.
The focusing optics will be switched to the same reflective mirror pair as
planned for FLASHForward. This eliminates the B-integral effect limiting
beam quality, which was introduced by the lenses. The interior of the ITC
is mostly rebuilt. It will feature the ability to move the imaging path and
thus scan the plasma longitudinally. This way the z-axis can be calibrated
to the vacuum focus position without shifting the plasma. The whole setup
will be better motorized in order to control the plasma imaging from outside
the test laboratory.
After the setup of the new ITC is done, the gas targets for FLASHForward
can be characterized. Uniform plasma will be the first priority, but the hollow
core plasma generated with the use of a spiral phase plate will soon follow.
In these experiments, the already available SPP with the topological charge
of l = 1 can be used. Later, higher charges can be used to generate plasmas
with a larger inner radius. The plasma geometries will then be tested at dif-
ferent laser energies and varying gas pressures to get a good understanding
of the plasma channel generated in the FLASHForward gas target.
The improvement of the laser phase can help to increase the focal spot qual-
ity of the laser beam. In the simulations done in chapter 3.2 the phase front
could significantly alter the far-field intensity distribution. An adaptive optic
such as a deformable mirror can change the phase front to the desired phase,
in this case, a flat phase front.
It would also be interesting to do particle-in-cell simulations of the acceler-
ation of electrons with the hollow plasma channel. This simulation could be
done either from an electron density calculated from the intensity distribution
in Zemax or a measured focus scan as a fully or semi theoretical approach, or
with the electron densities obtained from the interferometry measurements.
These results could then be compared with experimental data from FLASH-
Forward, resulting in better simulation results or improvement in the plasma
generating mechanisms.
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